

Problem Introduction & Contribution

Semantic visual correspondence:

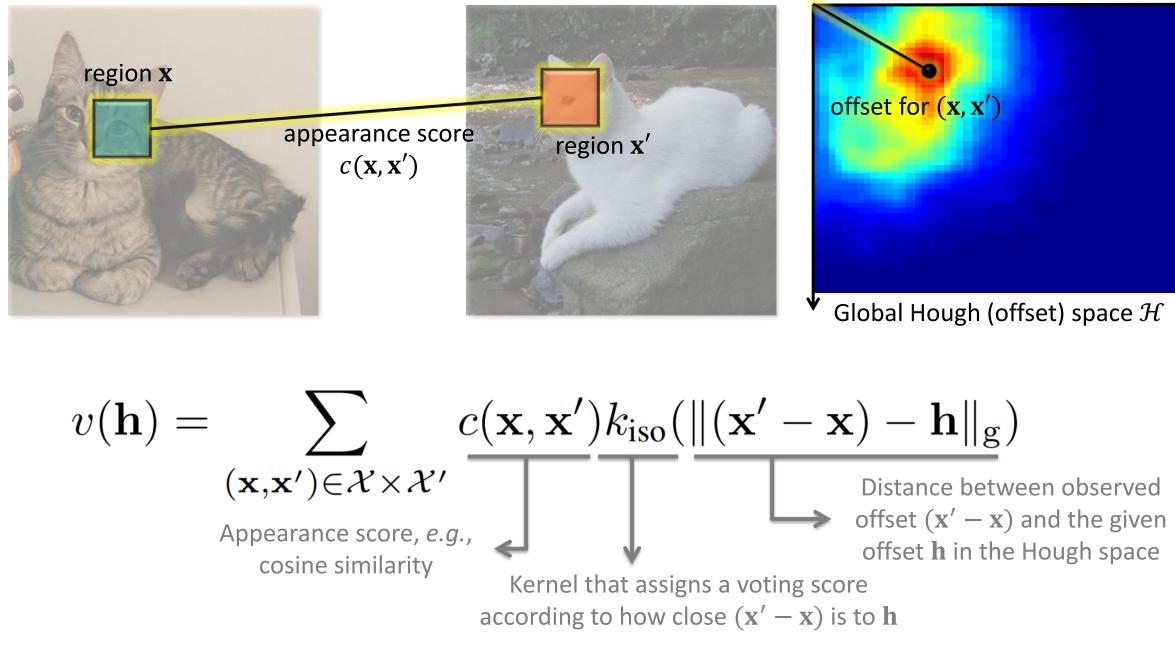
Matching images depicting different instances of the same object class Visual correspondence "in the wild," generalizing to other matching tasks Core component for many vision tasks, *e.g.*, tracking, retrieval, etc.

Our contributions:

Introduce a Hough transform perspective on convolutional matching Develop trainable CHM layer with **semi-isotropic high-dimensional** kernel Propose CHMNet with a **small number of interpretable parameters SOTA** on three standard benchmarks of semantic correspondence

Hough Matching (HM)

Hough matching is the algorithm of *Cho et al.* (CVPR 2015) which reweights appearance similarity by Hough `voting' to enforce geometric consistency



- **Limitation:** The Hough space is shared for all candidate matches so it cannot capture the reliability of a specific candidate matches, thus being less accurate and weak to background clutters.
- **Solution:** to create a **local** & **individual** voting space for each match, *i.e.*, convolutionalization of the Hough matching algorithm.

Convolutional Hough Matching Networks

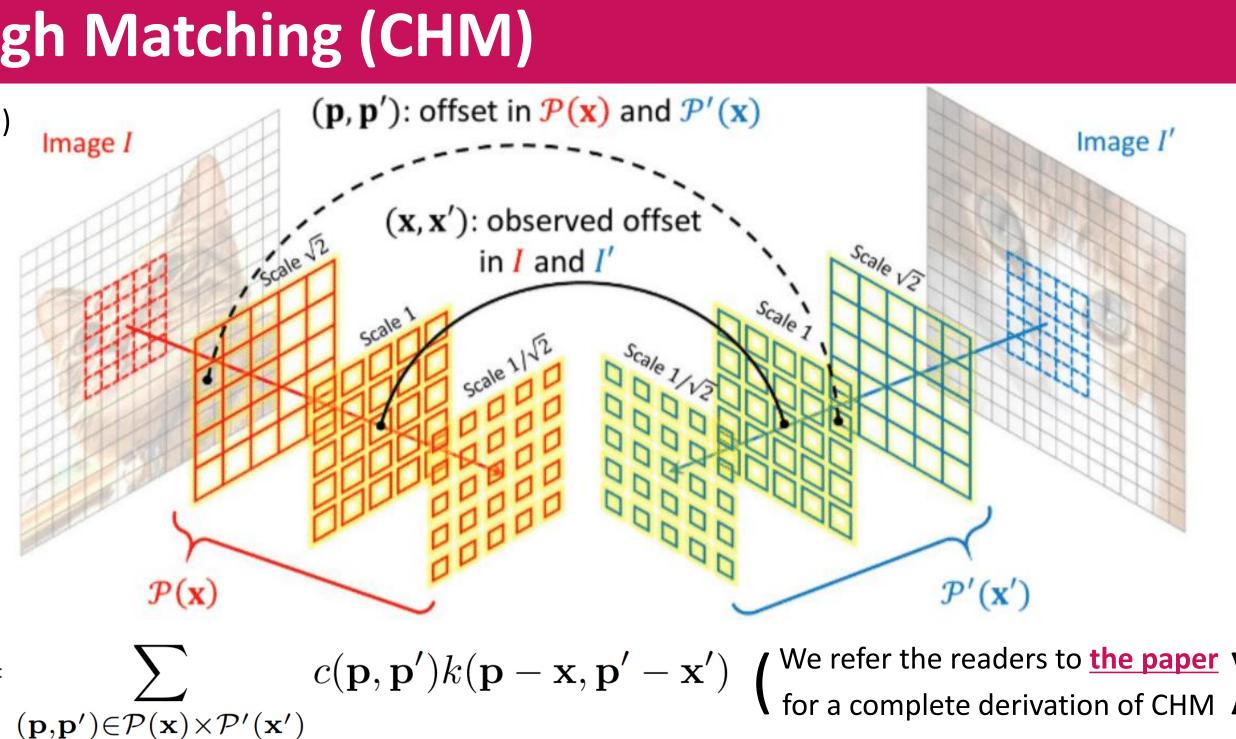
Juhong Min

POSTECH CSE & GSAI

Convolutional Hough Matching (CHM)

(global & shared) (local & individual) \rightarrow HM CHM

- . We introduce local windows, $\mathcal{P}(\mathbf{x})$ and $\mathcal{P}'(\mathbf{x}')$, around regions \mathbf{x} and \mathbf{x}' .
- 2. The local voting space is now dedicated to $(\mathbf{x}, \mathbf{x}')$.
- 3. Let $k(\mathbf{z}, \mathbf{z}')$ represent kernel value corresponding to two positions, \mathbf{z} and \mathbf{z}' .
- 4. Then we have, $c_{\text{HM}}(\mathbf{x}, \mathbf{x}') =$



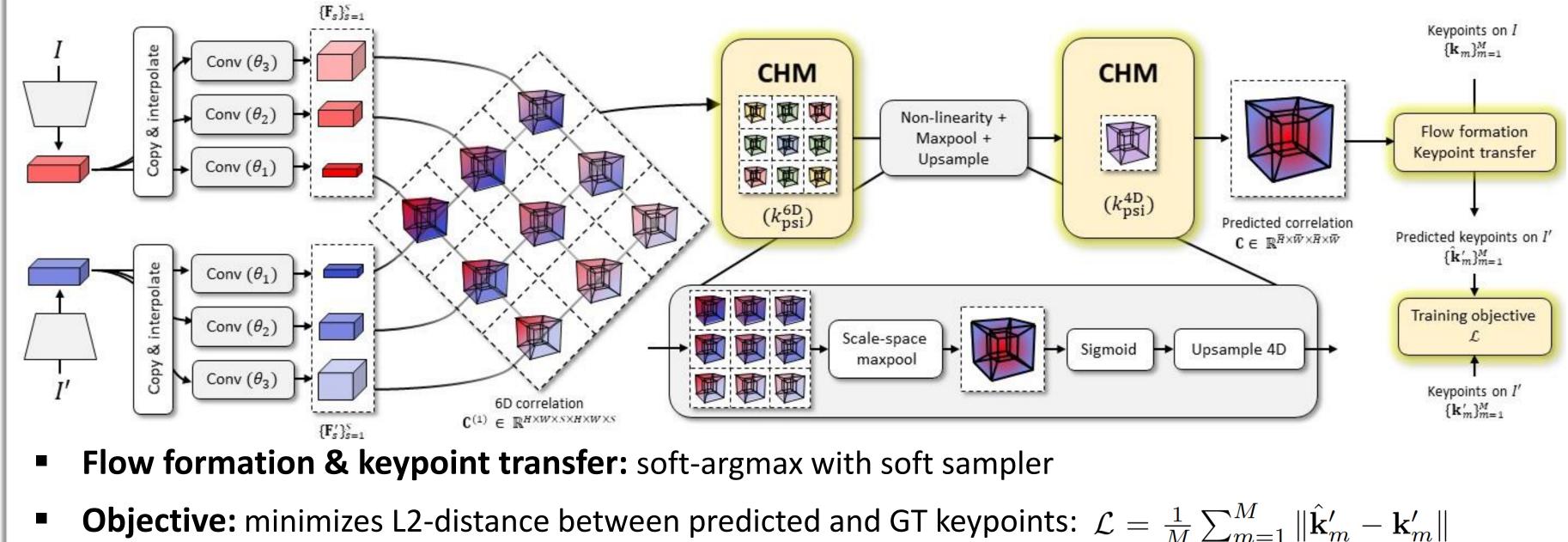
High-dimensional convolution on correlation tensor as local & individual Hough matching

We further relax isotropy and propose position-sensitive isotropic kernel k_{psi} which shares parameters whose triplets $(\|\mathbf{p}' - \mathbf{p}\|_{g}, \|\mathbf{p} - \mathbf{x}\|_{g}, \|\mathbf{p}' - \mathbf{x}'\|_{g})$ are the same.

Advantage of CHM over existing 4D convolutions on correlation:

- **Generalizability**: voting space can be extended to higher dim. beyond 4D, e.g., 6D (translation & scale)
- **Scalability**: channel size of 1 & parameter sharing \rightarrow small number of parameters
- Interpretability: a single kernel for each layer eases kernel visualization
- **Performance**: state-of-the-art performance on three standard benchmark datasets

Convolutional Hough matching networks (The CHM part with k_{psi} has 275 parameters):

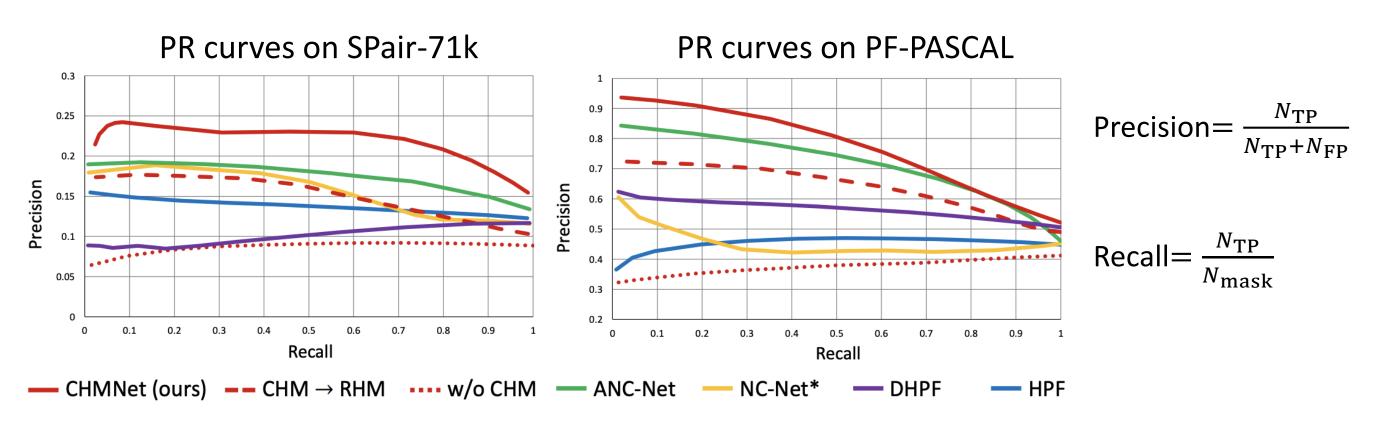


Minsu Cho

Experimental Results and Analyses

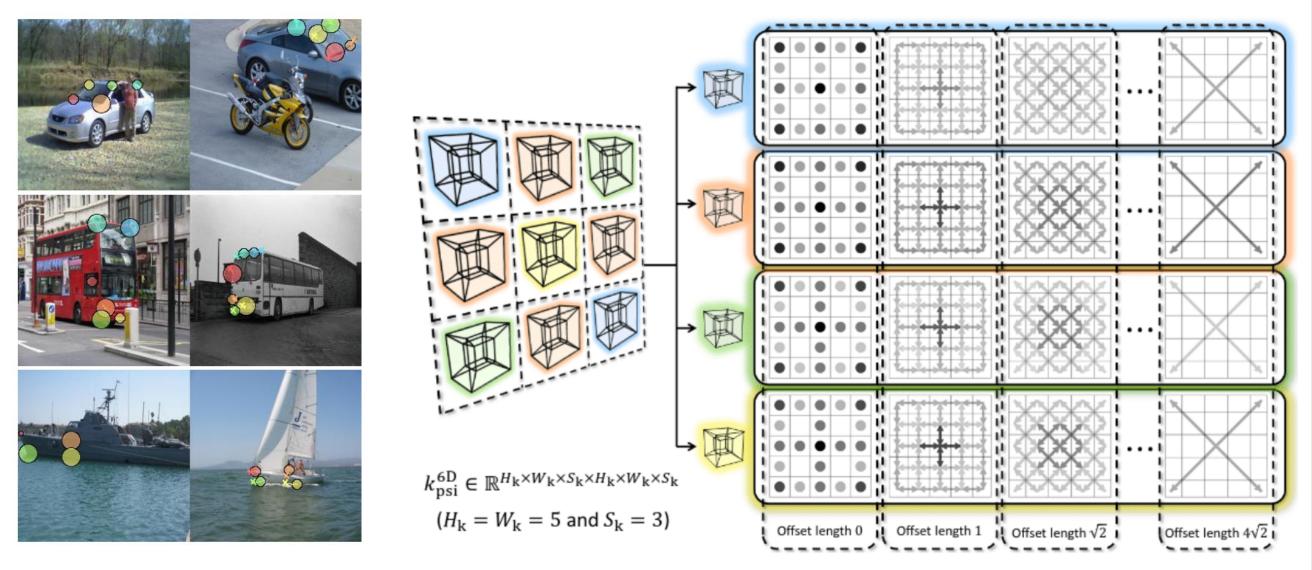
Evaluation results on semantic correspondence benchmarks:

Methods	SPair-71k PCK @ α_{bbox}		PF-PASCAL PCK @ α_{img}		PF-WILLOW PCK @ α_{bbox}		uses nD conv?	FLOPs (G)	time (<i>ms</i>)	memory (GB)
	0.1 (F)	0.1 (T)	0.05	0.1	0.05	0.1				
UCN _{res101} (NeurIPS'16)	-	17.7	-	75.1	-	-	×	-	-	-
HPF _{res101} (ICCV'19)	28.2	-	60.1	84.8	45.9	74.4	×	-	63	-
SCOT _{res101} (CVPR'20)	35.6	-	63.1	85.4	47.8	76.0	×	<u>6.2</u>	151	4.6
DHPF _{res101} (ECCV'20)	<u>37.3</u>	27.4	<u>75.7</u>	<u>90.7</u>	49.5	77.6	×	2.0	<u>58</u>	1.6
NC-Net [*] _{res101} (NeurIPS'18)	-	-	-	81.9	-	-	4D	44.9	222	<u>1.2</u>
$\text{DCC-Net}_{\text{res101}}^*$ (ICCV'19)	-	-	-	83.7	-	-	4D	47.1	567	2.7
ANC-Net _{res101} (CVPR'20)	-	<u>28.7</u>	-	86.1	-	-	4D	44.9	216	0.9
CHMNet _{res101} (ours)	46.3	30.1	80.1	91.6	52.7	<u>79.4</u>	6D	19.6	54 [†] (248)	1.6



Channel size experiments: High-dimensional convolution on a correlation tensor is to learn a reliable voting strategy rather than to capture diverse patterns in the correlation tensor.

Qualitative results & learned kernel (k_{psi}) visualization:



project page

arXiv

code

