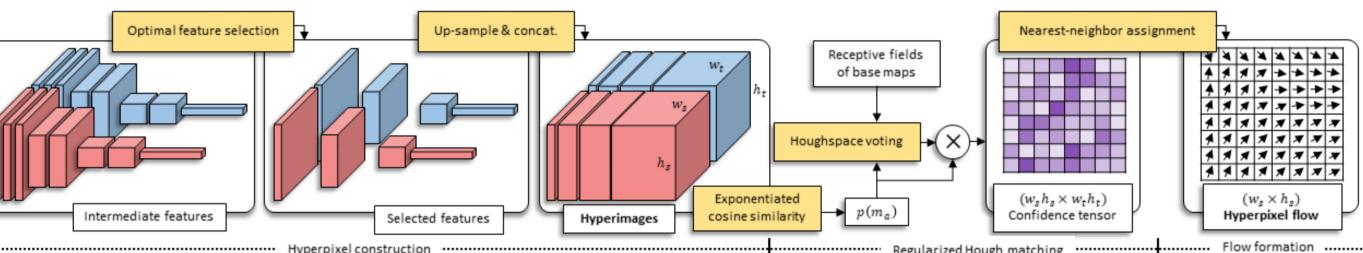


Problem definition and motivation

- Semantic correspondence: Matching images depicting different instances of the same class
- Limitation of existing approaches: Prediction relies on features from a specific convolutional layer Fails to fully exploit different levels of semantic features
- Limitation of existing datasets: Small number of image pairs with similar viewpoints and scales Limited annotation types and no clear splits for learning

Contributions

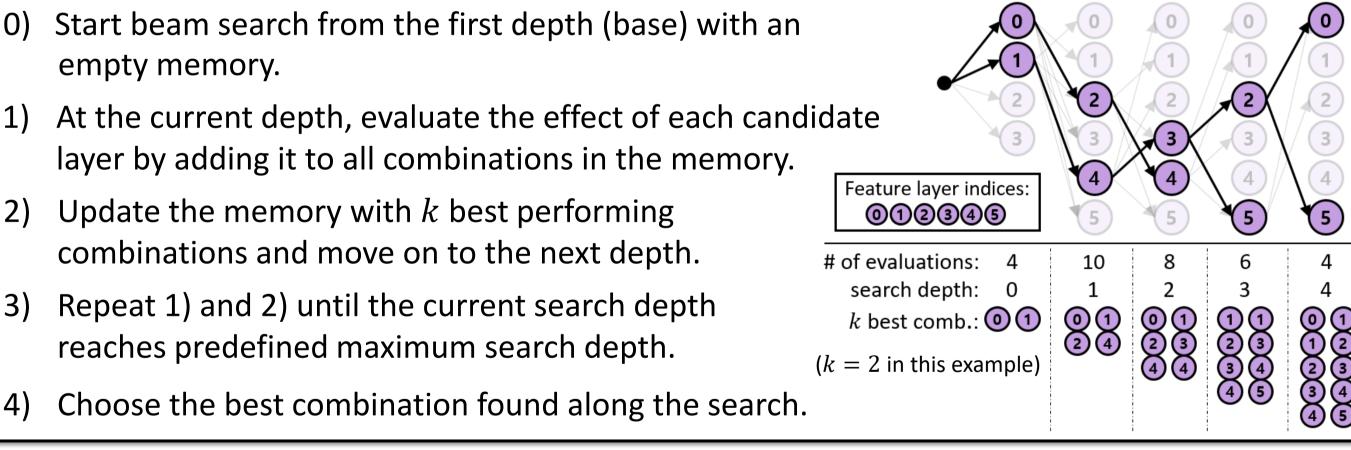
- . Establish reliable correspondences using **multi-layer features**
- 2. Propose an **efficient, real-time** matching framework
- 3. SOTA using only a **small number of validation pairs** for model tuning
- 4. Introduce a large-scale dataset with richer annotations


Multi-scale receptive fields Features of all intermediate conv layers at the position Feature layer selection Hyperpixel

Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features

^{1,2}Juhong Min ^{1,2}Jongmin Lee ^{3,4}Jean Ponce ^{1,2}Minsu Cho ²NPRC ¹POSTECH

Proposed method


Overall architecture:

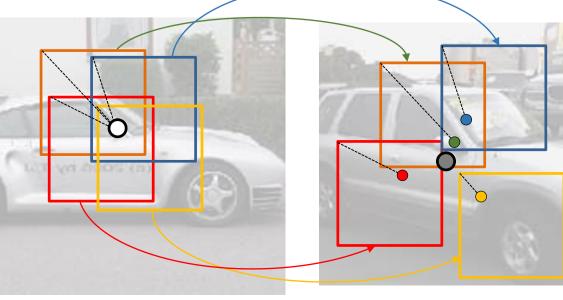
1. Hyperpixel construction:

- Extract *L* intermediate features maps of CNN pretrained on classification (*e.g.*, ImageNet).
- Take feature maps from the set of layers optimized for correspondence.
- (These layers are pre-selected offline by beam search using small validation data. See below.)
- Concatenate them along channels with upsampling to the size of base map.

Beam search for hyperpixel layers: a breath-first search with a limited memory k

2. Regularized Hough matching:

- A variant of probabilistic of Hough matching, algorithm of Cho et al.'2015
- Reweight appearance similarity by Hough voting to enforce geometric consistency.

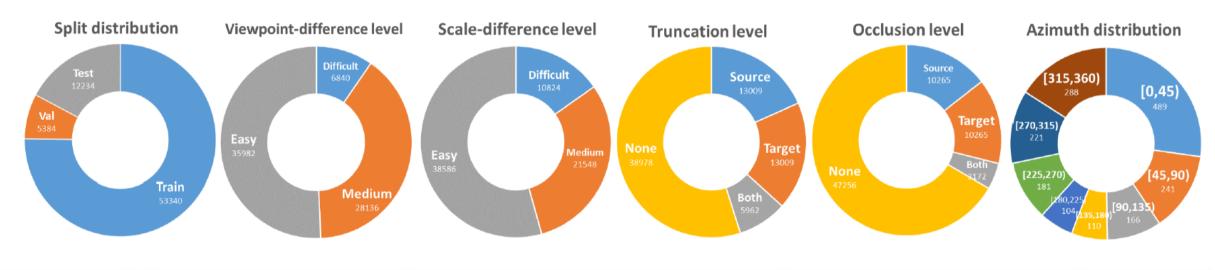

$$p(m_{\mathrm{a}}) = \operatorname{ReLU}\left(\frac{\mathbf{f} \cdot \mathbf{f}'}{\|\mathbf{f}\| \|\mathbf{f}'\|}\right)^{d} \quad p(m|\mathcal{D}) \propto p(m_{\mathrm{a}}) \sum_{\mathbf{x} \in \mathcal{X}} p(m_{\mathrm{g}}|\mathbf{x}) \sum_{m \in \mathcal{H} \times \mathcal{H}'} p(m_{\mathrm{a}}) p(m_{\mathrm{g}}|\mathbf{x})$$

• Regular geometry of hyperpixel enables real-time matching.

3. Flow formation & keypoint transfer:

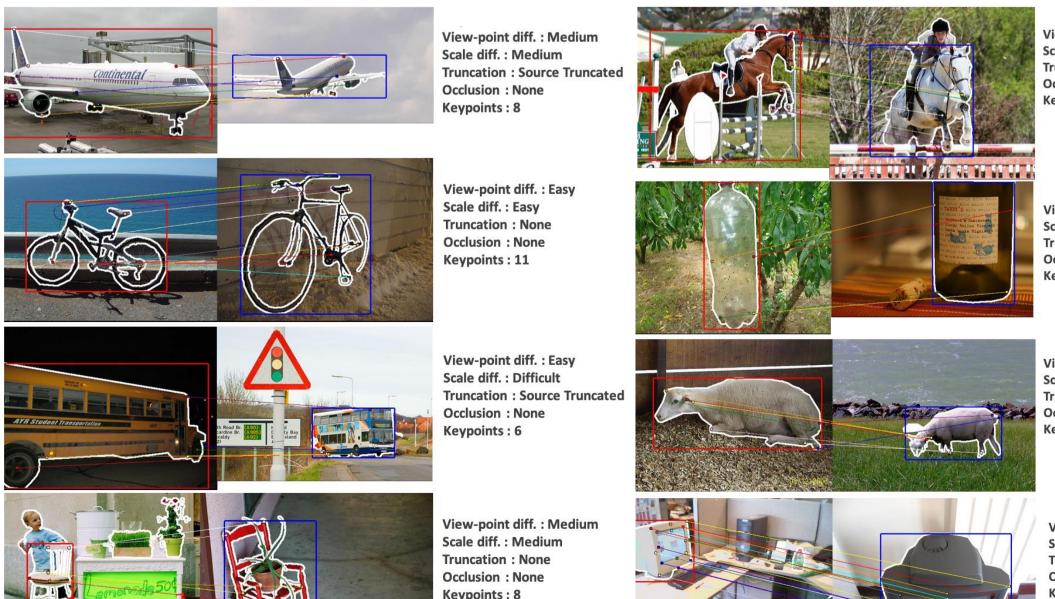
• Assign a match by nearest-neighbor assignment. • Evaluate each pair using PCK:

$$\operatorname{PCK}(\mathcal{I}, \mathcal{I}') = \frac{1}{M} \sum_{m=1}^{M} \mathbb{1}[||\mathbf{p}_m - \mathbf{p}'_m|| \le \alpha_{\tau} \max(w_{\tau}, h_{\tau})]$$


⁴DI ENS ³Inria

SPair-71k large-scale dataset

Comparison between SPair-71k and existing datasets:


Dataset name		Size (pairs)	Class	Annotations	Characteristics		
Caltech-101	Kim et al. CVPR'13	1,515	101	object segmentation	tightly cropped images of objects, little background		
PASCAL-PARTS	Zhou et al. CVPR'15	3,884	20	keypoints (0~12), azimuth, elevation, cyclo-rotation, body part segmentation	tightly cropped images of objects, little background, part and 3D infomation		
Animal-parts	Novotny et al. BMVC'16	≈7,000	100	keypoints (1~6)	keypoints limited to eyes and feet of animals		
TSS	Taniai <i>et al</i> . CVPR'16	400	9	object segmentation, flow vectors	cropped images of objects, moderate background		
PF-WILLOW	Ham <i>et al</i> . CVPR'16	900	5	keypoints (10)	center-aligned images, pairs with the same viewpoint		
PF-PASCAL	Ham <i>et al</i> . TPAMI'18	1,300	20	keypoints (4 \sim 17), bbox.	center-aligned images, pairs with the same viewpoint		
SPa	ir-71k (ours)	70,958	18	keypoints (3~30), azimuth, view-point diff., scale diff., trunc. diff., occl. diff., object seg., bbox.	large-scale data with diverse variations, rich annotations, clear dataset splits		

Dataset statistics:

Tuna	View-point diff.				Scale diff.			Truncati	on diff.		Occlusion diff.				
Туре	easy	medi	hard	easy	medi	hard	none	src	tgt	both	none	src	tgt	both	
Train	26,466	21,646	5,228	29,248	16,184	7,908	29,184	9,796	9,796	4,564	35,330	7,737	7,737	2,536	
Val	2,862	2,016	506	2,880	1,570	934	2,744	1,047	1,047	546	3,760	722	722	180	
Test	6,654	4,474	1,106	6,458	3,794	1,982	7,050	2,166	2,166	852	8,166	1,806	1,806	456	
All	35,982	28,136	6,840	38,586	21,548	10,824	38,978	13,009	13,009	5,962	47,256	10,265	10,265	3,172	

Example pairs and annotations:

Truncation : None Occlusion : Target Occluded

View-point diff. : Easy Scale diff. : Easy Truncation : Target Truncated

View-point diff. : Easy Scale diff. : Medium runcation : None clusion : Target Occluded

View-point diff. : Mediur Scale diff. : Medium runcation : None clusion : None

(GitHub

Experimental results

Performance on standard benchmarks of semantic correspondence:

Mathada		Companyi ai an	PF-PAS.	$(@\alpha_{img})$	PF-WIL.	$(@\alpha_{bbox})$	Caltech	time (mag)	
Methods		Supervision	0.05	0.1	0.05	0.1	LT-ACC	IoU	time (ms)
PF _{HOG}	Ham et al. CVPR'16	-	31.4	62.5	28.4	56.8	0.78	0.50	> 1000
CNNGeo _{res101}	Rocco et al. CVPR'17	synthetic warp	41.0	69.5	36.9	69.2	0.79	0.56	40
A2Net _{res101}	Seo et al. ECCV'18	(self-supervised)	42.8	70.8	36.3	68.8	0.80	0.57	53
DCTM _{CAT-FCSS}	Kim et al. ICCV'17		34.2	69.6	38.1	61.0	0.83	0.52	-
Weakalign _{res101}	Rocco et al. CVPR'18	image labels	49.0	74.8	37.0	70.2	0.85	0.63	41
NC-Net _{res101}	Rocco et al. NeurIPS'18	(weakly-supervised)	54.3	78.9	33.8	67.0	0.85	0.60	261
RTNs _{res101}	Kim et al. NeurIPS'18		55.2	75.9	41.3	71.9	-	-	376
UCN _{GoogLeNet}	Choy et al. NeurIPS'16		29.9	55.6	24.1	54.0	-	-	-
SCNet _{vgg16}	Han et al. ICCV'17	keypoints	36.2	72.2	38.6	70.4	0.79	0.51	> 1000
NN-Cyc _{res101}	Laskar et al. WACV'19		55.1	85.7	40.5	72.5	0.86	0.62	-
	PF _{res50} (ours)	keypoints	60.5	83.4	46.5	72.4	0.88	0.64	<u>34</u> (19)
HP	F _{res101} (ours)	• 1	60.1	84.8	<u>45.9</u>	74.4	0.87	0.63	63
HPF _r	es101-FCN (ours)	(validation only)	63.5	88.3	48.6	76.3	<u>0.87</u>	<u>0.63</u>	-
(HP	F_{res101} (k=1)	keypoints	$59.4_{\pm 0.89}$	$83.9_{\pm 1.14}$	$44.5_{\pm 0.90}$	$72.5_{\pm 1.22}$	0.87	0.63	-
HP	F_{res101} (k=2)	(validation only,	$58.3_{\pm 1.33}$	$84.5_{\pm 0.77}$	$44.7_{\pm 0.92}$	$73.1_{\pm 1.05}$	0.87	0.63	-
(\ HP	F_{res101} (k=3)	small set)	$59.4_{\pm 1.16}$	$84.5_{\pm 0.27}$	$45.1_{\pm 0.55}$	$73.4_{\pm 0.52}$	0.87	0.63	-
L HPF	res101 (random)	-	$44.5_{\pm 11.11}$	$74.7_{\pm 6.46}$	$32.8_{\pm 8.12}$	$62.4_{\pm 6.67}$	0.85	0.55	-

Small set exp.: layer search using **ONLY** k random pairs per class (20 * k pairs total)Results with little supervisory signal (20 pairs) is comparable as using all data (308 pairs).

Performance on SPair-71k dataset:

Methods		aero	bike	bird	boat	bottle	bus	car	cat	chair	COW	dog	horse	moto	person	plant	sheep	train	tv	all
	CNNGeo _{res101}	21.3	15.1	34.6	12.8	31.2	26.3	24.0	30.6	11.6	24.3	20.4	12.2	19.7	15.6	14.3	9.6	28.5	28.8	18.1
Transferred	A2Net _{res101}	20.8	17.1	37.4	13.9	33.6	29.4	26.5	34.9	12.0	26.5	22.5	13.3	21.3	20.0	16.9	11.5	28.9	31.6	20.1
models	WeakAlign _{res101}	23.4	17.0	41.6	14.6	37.6	28.1	26.6	32.6	12.6	27.9	23.0	13.6	21.3	22.2	17.9	10.9	31.5	34.8	21.1
	NC-Net _{res101}	<u>24.0</u>	16.0	45.0	13.7	35.7	25.9	19.0	50.4	14.3	32.6	27.4	19.2	21.7	20.3	20.4	13.6	33.6	40.4	26.4
SPair-71k	CNNGeo _{res101}	23.4	16.7	40.2	14.3	36.4	27.7	26.0	32.7	12.7	27.4	22.8	13.7	20.9	21.0	17.5	10.2	30.8	34.1	20.6
trained	A2Net _{res101}	22.6	18.5	42.0	16.4	37.9	30.8	26.5	35.6	13.3	29.6	24.3	16.0	21.6	22.8	20.5	13.5	31.4	36.5	22.3
models	WeakAlign _{res101}	22.2	17.6	41.9	15.1	38.1	27.4	27.2	31.8	12.8	26.8	22.6	14.2	20.0	22.2	17.9	10.4	32.2	35.1	20.9
models	NC-Net _{res101}	17.9	12.2	32.1	11.7	29.0	19.9	16.1	39.2	9.9	23.9	18.8	15.7	17.4	15.9	14.8	9.6	24.2	31.1	20.1
HPF _{res50} (ours)		25.3	18.5	47.6	14.6	37.0	22.9	18.3	51.1	16.7	31.5	30.8	19.1	23.7	23.8	23.5	14.4	30.8	37.2	27.2
HPF_{res101} (ours)		25.2	18.9	52.1	15.7	38.0	22.8	19.1	52.9	17.9	33.0	32.8	20.6	24.4	27.9	21.1	15.9	31.5	35.6	28.2

SOTA on new benchmark SPair-71k that has pairs with large view-point and scale differences.

Ablation study:

	Aplatio	istuuy	•		PCK curve on PF-PASCAL	PCK curve on SPair-71k				
	Matching module	PF-PASCAL	PF-WILLOW	95		30				
_	Matching module	$lpha_{ m img}=0.1$	$\alpha_{\rm bbox} = 0.1$	85		25				
	NN w/ $(d = 1)$	69.0	60.9	(%		8 20	╞┹┽┼┽╡╡╡╧╞╞╞┼┼┽╡╡╡╧╞╞╞┼┼┽╡╡╡╧╞╞╞┼┼┼╡╡╇			
	RHM w/ $(d = 1)$	81.4	68.6	¥ 75		\mathbf{x}				
	RHM w/ $(d = 2)$	84.4	73.3	PC	val — test	ଧ 2 15	val —e— test			
	RHM w/ $(d = 3)^*$	84.8	74.4	65	val test	10	val test			
	RHM w/ $(d = 4)$	<u>84.8</u>	74.1	55		5	•			
_	RHM w/ $(d = 5)$	<u>84.5</u>	<u>73.9</u>		2 25 28 22 26 17 21 6 29 23 18 7 27 13 24 20 9 30 4 19 14 11 15 3 5 10 16 8 31 12 1 0 32 33	_	0 2829 192630212227 8 2521 6 24 7 231731 18 4 10 5 1615 1311 2 9 1 12 14 3 32 33			

Only a few layers are sufficient to achieve a comparable performance with the best one. Qualitative results:

(a) source image