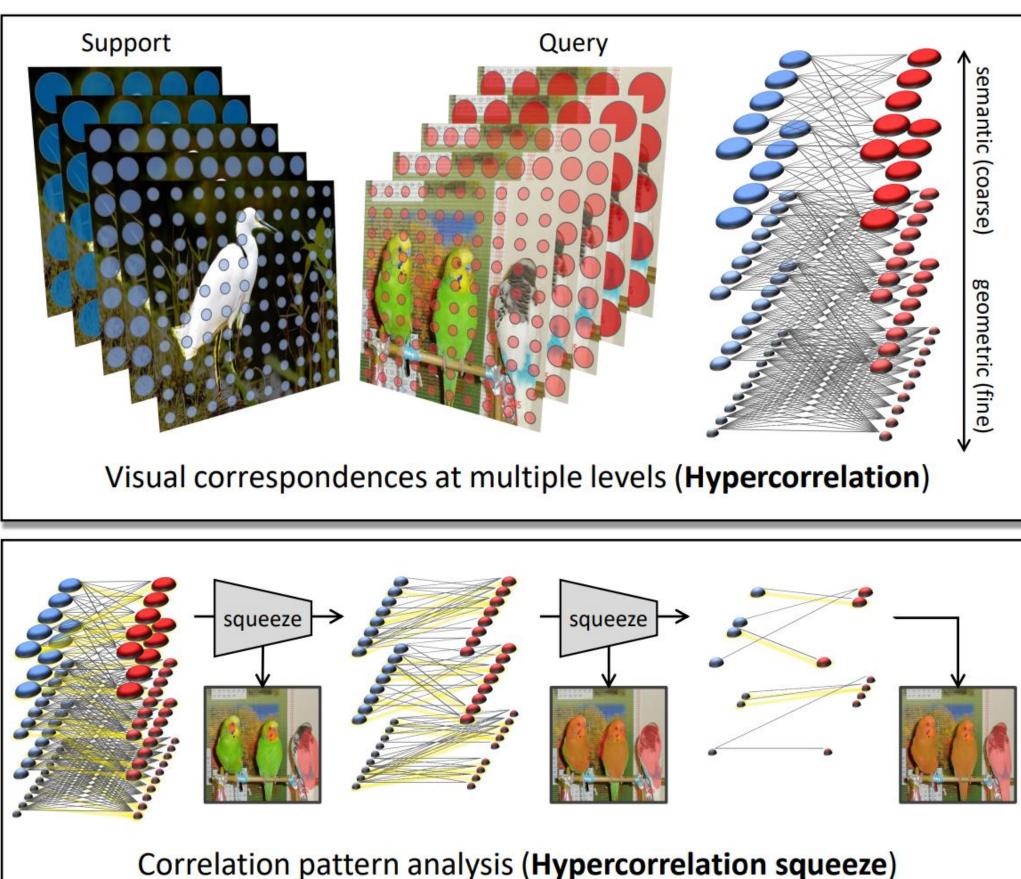


Problem definition and motivation

Few-shot segmentation:

Hypercorrelation: a form of "relational features" that represent relations between input images in multiple visual aspects, *i.e.*, multi-channel high-dimensional correlations Segmenting target region from a query image given a few annotated examples $\hat{\mathbf{C}}_{l}(\mathbf{x}^{q}, \mathbf{x}^{s}) = \operatorname{ReLU}\left(\frac{\mathbf{F}_{l}^{q}(\mathbf{x}^{q}) \cdot \hat{\mathbf{F}}_{l}^{s}(\mathbf{x}^{s})}{\|\mathbf{F}_{l}^{q}(\mathbf{x}^{q})\|\|\hat{\mathbf{F}}_{l}^{s}(\mathbf{x}^{s})\|}\right)$ $\mathbf{C}_p \in \mathbb{I}$ Hypercorrelation pyramid 4D correlation at vpercorrelation at Learning to learn to perform well on diverse tasks, *e.g.*, <u>episodic training</u> pyramid layer p each layer A dataset has training/test sets which are disjoint with respect to object classes Hypercorrelation Squeeze Networks: captures relevant patterns in high-dim. correlations Each set consist of multiple episodes, composed of *support* and *query* sets 3x3 conv, 128 ReLU (1st, 2nd dim.) $(128, H_3, W_3, H_{\epsilon}, W_{\epsilon})$ $(|\mathcal{L}_3|, H_3, W_3, H_3, W_3)$ Mostly adopt on prototype-based approach which loses spatial structure 3x3 conv, 64 ReLU upsample x2 4D convs

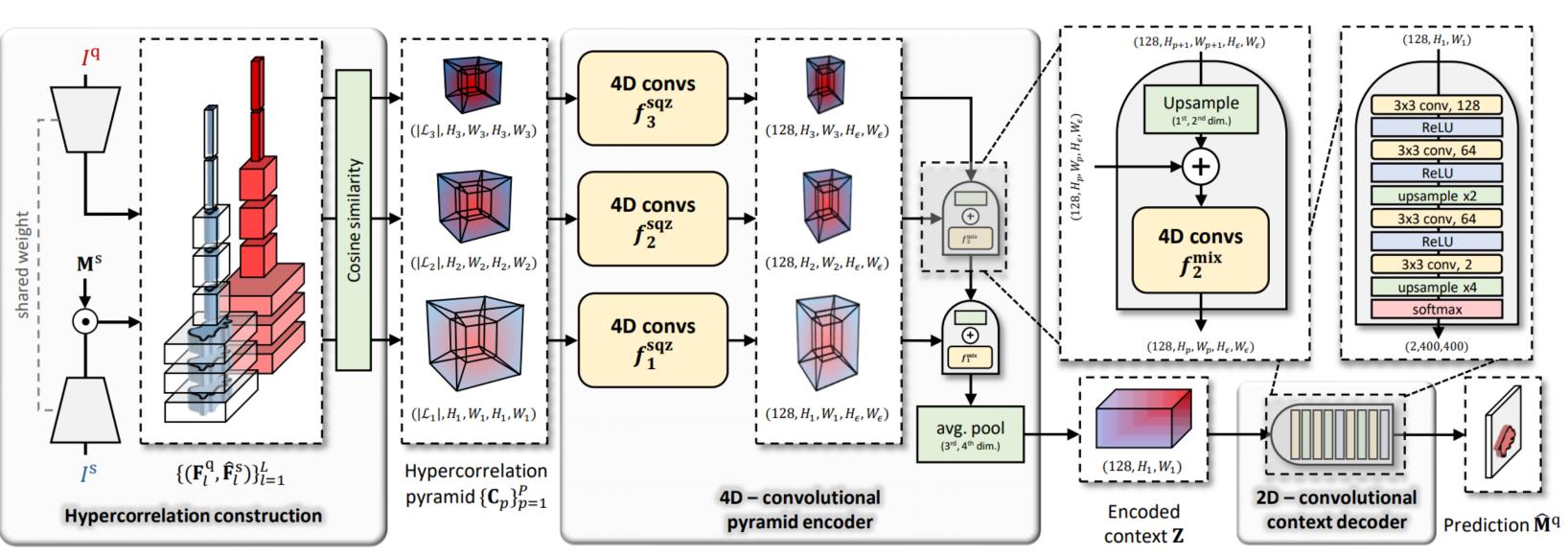

Meta-learning:

Limitations of existing approaches:

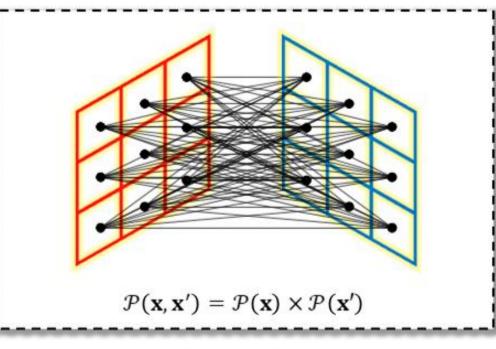
Hardly explore diverse levels of feature representation from a pretrained CNN Fail to capture relational patterns in complex pair-wise feature correlations

Contributions

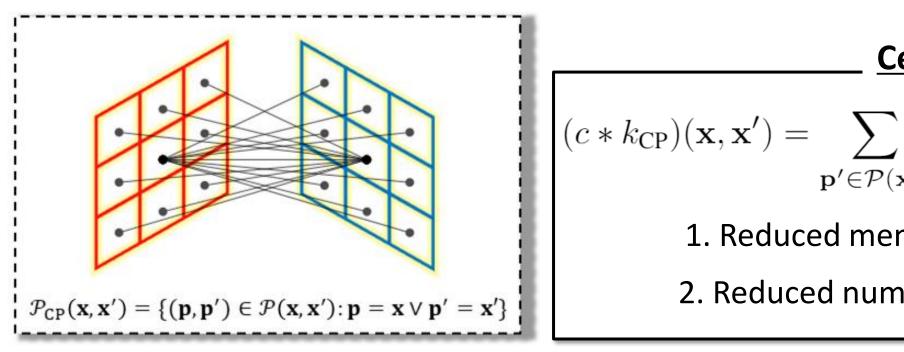
- 1. Present the Hypercorrelation Squeeze Networks with deep 4D convs
- 2. Propose effective and efficient **center-pivot 4D conv** kernels
- 3. Achieve **SOTA** on three standard benchmarks of few-shot segmentation


Hypercorrelation Squeeze for Few-Shot Segmentation

Dahyun Kang Juhong Min Minsu Cho Pohang University of Science and Technology (POSTECH)


Proposed method

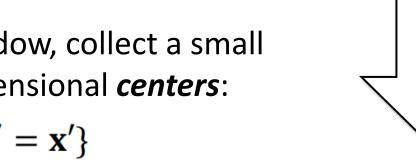
• **Center-Pivot 4D Convolution:** a variant of 4D convolution for efficient correlation processing

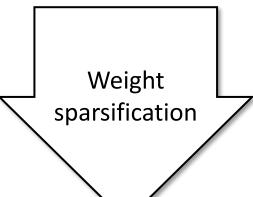

4D convolution $c(\mathbf{p}, \mathbf{p}')k(\mathbf{p} - \mathbf{x}, \mathbf{p}' - \mathbf{x}')$ $(c * k)(\mathbf{x}, \mathbf{x'}) =$ $(\mathbf{p},\mathbf{p'}) \in \mathcal{P}(\mathbf{x},\mathbf{x'})$

1. Quadratic complexity with respect to the input feature maps 2. Over-parameterization of the high-dimensional convolutional kernel

4D convolutional kernel

From a set of neighborhood positions in a local 4D window, collect a small subset of activations that *pivots* either one of 2-dimensional *centers*:


$$\mathcal{P}_{CP}(\mathbf{x},\mathbf{x}') = \{(\mathbf{p},\mathbf{p}') \in \mathcal{P}(\mathbf{x},\mathbf{x}') \colon \mathbf{p} = \mathbf{x} \lor \mathbf{p}'\}$$



Center-pivot 4D convolutional kernel

$$\mathbb{R}^{|\mathcal{L}_p| imes H_p imes W_p imes H_p imes W_p}$$

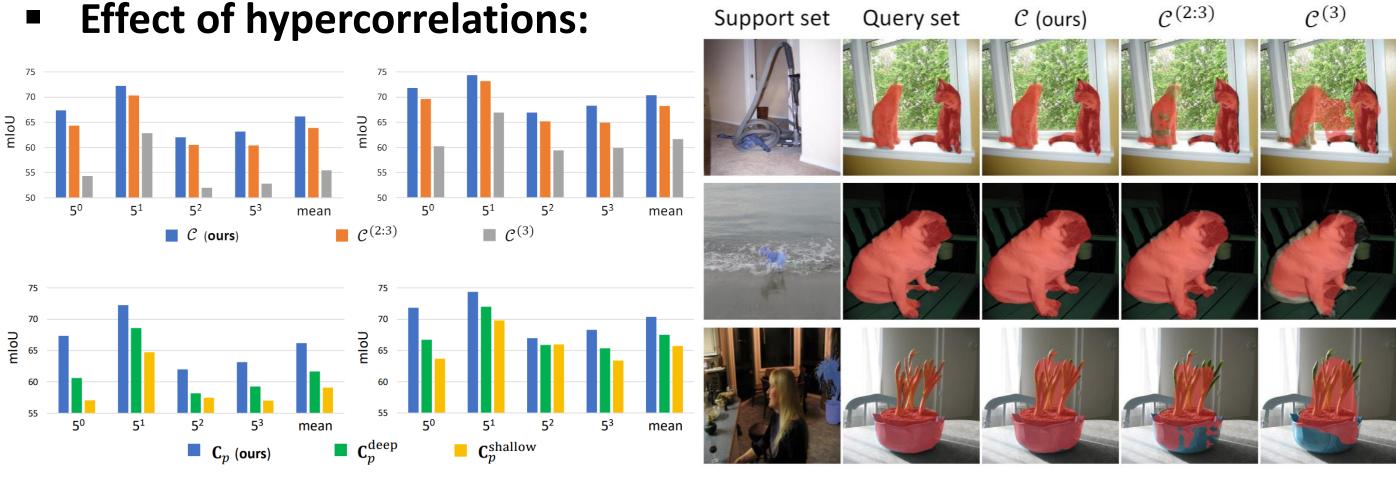
$$\mathcal{C} = \{\mathbf{C}_p\}_{p=1}^P$$

Center-pivot 4D convolution

$$c(\mathbf{x}, \mathbf{p}')k_c^{2\mathrm{D}}(\mathbf{p}' - \mathbf{x}') + \sum_{\mathbf{p} \in \mathcal{P}(\mathbf{x})} c(\mathbf{p}, \mathbf{x}')k_{c'}^{2\mathrm{D}}(\mathbf{p} - \mathbf{x})$$

nory and time complexity:
$$\mathcal{O}(N^4) \rightarrow \mathcal{O}(N^2)$$

2. Reduced number of learnable parameters: $11.3M \rightarrow 2.6M$


Evaluation results on standard few-shot segmentation datasets:

						PASCA	$L-5^i$							
Backbone network	Methods	5^{0}	5^{1}	5^{2}	-shot 5 ³	mean	FB-IoU	5^{0}	5^{1}	5^{2}	-shot 5 ³	mean	FB-IoU	# learnable params
ResNet50	PPNet (ECCV'20) PFENet (TPAMI'20) RePRI (CVPR'21)	48.6 <u>61.7</u> 59.8	60.6 <u>69.5</u> 68.3	55.7 55.4 62.1	46.5 <u>56.3</u> 48.5	52.8 <u>60.8</u> 59.7	69.2 <u>73.3</u>	58.9 63.1 <u>64.6</u>	68.3 70.7 <u>71.4</u>	66.8 55.8 71.1	58.0 57.9 <u>59.3</u>	63.0 61.9 <u>66.6</u>	<u>75.8</u> 73.9	31.5M <u>10.8M</u> -
	HSNet (ours)	64.3	70.7	<u>60.3</u>	60.5	64.0	76.7	70.3	73.2	<u>67.4</u>	67.1	69.5	80.6	2.6M
ResNet101	PPNet (ECCV'20) PFENet (TPAMI'20) RePRI (CVPR'21)	52.7 60.5 59.6	62.8 69.4 68.6	57.4 54.4 62.2	47.7 55.9 47.2	55.2 60.1 59.4	70.9 <u>72.9</u>	60.3 62.8 66.2	70.0 70.4 71.4	69.4 54.9 <u>67.0</u>	<u>60.7</u> 57.6 57.7	65.1 61.4 <u>65.6</u>	<u>77.5</u> 73.5	50.5M <u>10.8M</u>
	HSNet (ours) HSNet [†] (ours)	67.3 <u>66.2</u>	72.3 <u>69.5</u>	$\frac{62.0}{53.9}$	63.1 <u>56.2</u>	66.2 <u>61.5</u>	77.6 72.5	71.8 68.9	74.4 <u>71.9</u>	<u>67.0</u> 56.3	68.3 57.9	70.4 63.7	80.6 73.8	2.6M 2.6M

			С	COCO-2	20^i								FSS-1000		
Backbone network	Methods	1-shot				5-shot					Backbone	Methods		loU	
		20^{0}	20^{1}	20^{2}	20^{3}	mean	$ 20^{\circ}$	20^{1}	20^{2}	20^{3}	mean	network		1-shot	5-shot
ResNet50	RPMM (ECCV'20)	29.5	36.8	28.9	27.0	30.6	33.8	42.0	33.0	33.3	35.5		OSLSM (BMVC'17)	70.3	73.0
	PFENet (TPAMI'20)	36.5	38.6	<u>34.5</u>	<u>33.8</u>	<u>35.8</u>	36.5	43.3	37.8	38.4	39.0	VGG16	FSS (CVPR'20)	73.5	80.1
	RePRI (CVPR'21)	32.0	38.7	32.7	33.1	34.1	<u>39.3</u>	45.4	<u>39.7</u>	<u>41.8</u>	41.6	V0010	DoG-LSTM (WACV'21)	80.8	<u>83.4</u>
	HSNet (ours)	<u>36.3</u>	43.1	38.7	38.7	39.2	43.3	51.3	48.2	45.0	46.9		HSNet (ours)	82.3	85.8
	DAN (ECCV'20)	-	-	-	-	24.4	-	-	-	-	29.6	ResNet50	HSNet (ours)	85.5	87.8
ResNet101	PFENet (TPAMI'21)	<u>36.8</u>	<u>41.8</u>	<u>38.7</u>	<u>36.7</u>	<u>38.5</u>	<u>40.4</u>	<u>46.8</u>	<u>43.2</u>	<u>40.5</u>	<u>65.8</u>	ResNet101	DAN (ECCV'20)	85.2	88.1
	HSNet (ours)	37.2	44.1	42.4	41.3	41.2	45.9	53.0	51.8	47.1	49.5	Residenti	HSNet (ours)	86.5	88.5

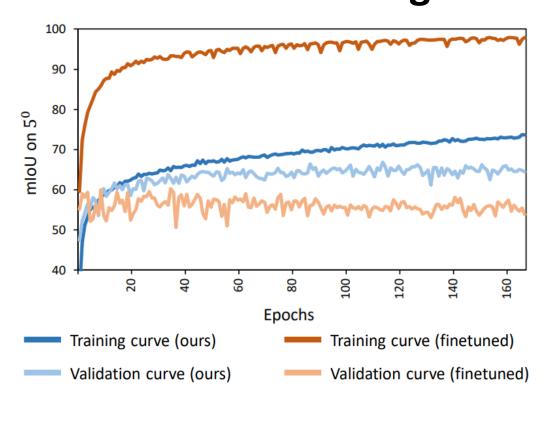
Effectiveness of center-pivot 4D kernel:

Kernel type	50	5^1	1-shot 5 ²	5^3	mean 5 ⁰	5^1	5-shot 5^2	5 ³	mean	# learnable params	time (<i>ms</i>)	memory footprint (GB)	FLOPs (G)
Original 4D kernel (NeurIPS'18)	64.5	71.4	62.3	61.7	64.9 70.8	74.8	67.4	67.5	70.1	11.3M	512.17	4.12	702.35
Separable 4D kernel (NeurIPS'19)	<u>66.1</u>	72.0	63.2	<u>62.6</u>	<u>65.9</u> <u>71.2</u>	74.1	<u>67.2</u>	<u>68.1</u>	70.2	<u>4.4M</u>	28.48	<u>1.50</u>	28.40
Center-pivot 4D kernel (ours)	67.3	72.3	62.0	63.1	66.2 71.8	<u>74.4</u>	67.0	68.3	70.4	2.6M	25.51	1.39	20.56

Robustness to domain shift:

Evaluation results of COCO-20ⁱ-trained model on each fold of PASCAL-5ⁱ

Method	COCO–	→PASCAL	# params	data augmentation
	1-shot	5-shot	to train	used during training
PFENet _{res50} (TPAMI'20)	61.1	63.4	<u>10.8M</u>	flip, rotate, crop
RePRI _{res50} (CVPR'21)	63.2	<u>67.7</u>	46.7M	flip
HSNet _{res50} (ours)	<u>61.6</u>	68.7	2.6M	none
HSNet _{res101} (ours)	64.1	70.3	2.6M	none


project page

arXiv

code

Experimental results and analyses

Effect of finetuning:

