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Abstract

Recent approaches to the task of single-image mesh gen-
eration typically involve a mesh deformation network which
progressively deforms an initial sphere mesh to get a final
geometry corresponding to the input image. One limita-
tion of this network is that it performs only a small num-
ber of deformations although deepening the network with
skip connections is current de facto standard for learning
robust representation. Another limiting factor is that the
number of deformations is always fixed regardless of the ge-
ometric and semantic complexity of the mesh to predict. In
this work we introduce a novel mesh deformation network
in which the number of deformations may grow or shrink
with constant memory cost by parameterizing the deriva-
tive of a mesh using differential equation solver. With such
approach, we demonstrate the amount of deformations may
adaptively change with advanced numerical methods.

1. Introduction
Understanding 3D world behind 2D images is a funda-

mental yet challenging problem in 3D vision. The advent
of deep neural networks (DNN) brought a great success to
recent methods [11, 15, 16] for generating a 3D representa-
tion, e.g., a mesh. A typical way of constructing a mesh that
corresponds to the input image is to iteratively deform an
initial mesh, a sphere, into a desired geometry, using con-
volutional features extracted from 2D CNN. However, the
existing deformation networks primarily focus on learning
transformations of input vertices rather than learning resid-
uals [8], i.e., the amount of transformations required at a
particular layer, a mesh gradient in our case.

Deep networks with skip connections are proven to be
significantly effective in learning robust representation [2,
8, 12, 14]. Recent work [4] defines the ResNet as an ordi-
nary differential equations (ODE), exposing various advan-
tages of such design. In this work, we propose a mesh de-
formation network that learns to predict mesh gradients by
framing the gradient prediction network as an ODE as illus-
trated in Fig. 1. We also discuss several benefits of defining
mesh deformation network using ODE solver.
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Figure 1. Existing mesh deformation networks typically involve
vertex transformation (top). We show this network can seamlessly
be converted into a mesh gradient predictor (middle). In this work
we remodel the gradient predictor into an ordinary differential
equation solver with a continuous time parameter (bottom).

2. Related Work

Single-image mesh generation. Inferring 3D representa-
tion from an image is a widely researched area in computer
vision. Having a small memory cost while preserving shape
details, mesh is a natural choice to efficiently represent a 3D
shape. Wang et al. [15] propose a graph-based network to
predict 3D mesh given an image by progressively deform-
ing a sphere. The use of sphere deformation networks be-
came a central paradigm in recent approaches [7, 11, 16].
These networks, however, mainly perform iterative vertex
transformation at each layer without learning any residu-
als [8] although skip connections enable robust representa-
tion learning by preserving identity mapping and safe gradi-
ent flow, incorporating deeper network design [2, 12, 14]. In
this aspect, conventional mesh deformation networks in the
task of single-image mesh generation have a fundamental
limitation in learning to predict reliable 3D representations.

Neural ordinary differential equation. Chen et al. [4] re-
cently introduced a new family of deep neural networks,
neural ordinary differential equations. Viewing each resid-
ual feature as a tiny gradient of the final prediction, they
frame the entire network as a function of time with a gradi-
ent prediction network, ODE solver. In this paper we show
the idea of neural ODE can effectively adopted to the task
of single-image mesh generation.
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3. Proposed Method
The proposed framework for single-image mesh gener-

ation consists of three main modules: (1) perceptual fea-
ture pooling, (2) mesh gradient prediction network, and (3)
training objective. In this section, we demonstrate each
module in detail and how we transform the mesh gradient
prediction network into an ODE solver.

3.1. Perceptual feature pooling

Given an input image I ∈ RH×W×C , a feature extrac-
tion network extracts a series of intermediate feature blocks.
We concatenate the feature blocks along channels with up-
sampling and denote the resultant feature vectors at each
spatial position p by {fp}H×Wp=1 . Given a meshM = (V, E)
with vertices V = {vi}Vi=1 and edges E = {ei}Ei=1 connect-
ing two vertices, we project 3D coordinates of the vertices
V on input image plane using camera intrinsics and pool
feature vectors nearest to each projected vertex as in [15]:

Vf = {[vi; fi]}Vi=1 (1)

where [·; ·] is channel-wise concatenation and fi is a fea-
ture vector spatially nearest to the coordinate of projected
vertex vi. We now pass the obtained vertex features with
the edges,Mf = (Vf , E), as an input to our mesh gradient
prediction network f .

3.2. Mesh gradient prediction network

To predict mesh gradients at layer l, a meshMl
f is passed

to 2-layer graph convolutional network (GCN) [1] f which
outputs the amount of deformation required at l-th layer:

dMl

dl
= f(Ml

f , θ
l). (2)

The resultant gradient is simply added to the input mesh:

Ml+1 =Ml + f(Ml, θl) (3)

where θl is learnable parameters of l-th gradient prediction
network. In Sec. 3.4, we demonstrate that we can reparam-
eterize the derivative of mesh by introducing a continuous
time parameter t, viewing Eq. 3 as a first-order linear ODE.

3.3. Training objective

Following the work of [15], we use two objectives to
train our model: chamfer distance loss and edge length loss.
Chamfer distance loss. Given two sets of vertices, V and
V ′, Chamfer distance measures a sum of Euclidean dis-
tances between a vertex v ∈ V and the nearest vertex in
the other set v′ ∈ V ′:

Lc =
∑
v∈V

minv′ ||v − v′||2 +
∑

v′∈V′

minv||v − v′||2 (4)
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Figure 2. Overall framework of our mesh deformation network.

Edge length loss. We minimize the Euclidean distance be-
tween a vertex v ∈ V and its neighboring vertices in v̄ ∈ V
in order to penalize outliers, thus preventing lengthy edges:

Le =
∑
v

∑
v̄∈N (v)

||v − v̄||2 (5)

The overall training objective of our model is defined as:
L = λcLc + λeLe where λc and λe weights for the losses.

3.4. Gradient prediction with ODE solver

As most differential equations which appears in the real
world are difficult to solve analytically, it is common to find
approximation to the solution numerically. The simplest
and oldest method for ODE is Euler’s method; given an
initial value y(t0) = y0 at time t0 and an ODE y′(t) =
f(t, y(t)), we compute the numerical estimates at subse-
quent time steps recursively with step size h as follows:

y(tn+1) = y(tn) + h · f(tn, y(tn)) (6)

which shares the same mathematical structure with our pro-
gressive mesh deformation model (Eq. 3):

Ml+1 =Ml + h · f(Ml, θl) (7)

by introducing the time step h. We can now transform Eq. 3
into a function of time, placing solution trajectory in a con-
tinuous, high-dimensional vector field [4]

Mtn+1 =Mtn + h · f(tn,Mtn , θ) (8)

where the mesh gradient prediction network f preserves the
similar network architecture, 2-layer GCN, but now with an
additional continuous time parameter tn. In practice, we
turn time constant into a vector by replication such that tn ∈
RT and concatenate to every vertex feature vector in Vf as
follows: Vt = {[vi; fi; tn]}Vi=1. The overall framework of
our approach with ODE solver is illustrated in Fig. 2.
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Category Chamfer distance (CD)
3D-R2N2 [5] PSG [6] N3MR [9] P2M [15] P2M∗ [15] ODEeuler

d (ours)
plane 0.895 0.430 0.450 0.477 0.383 0.408
# param. O(L) O(L) O(L) O(L) O(L) O(1)

Table 1. Results on ShapeNet [3]. Some results are from [15].
Following the work of https://github.com/nywang16/
Pixel2Mesh/blob/master/eval_testset.py (Line.
132-146), the CD is in units of 10−3. P2M∗: P2M trained using
samples of plane category only.

4. Experiments

In this section, we compare the method with the state of
the art and discuss the results.
Implementation detail. We implemented the proposed
framework on top of the existing code in repository
online which is available at https://github.com/

Tong-ZHAO/Pixel2Mesh-Pytorch. We used Adam op-
timizer [10] with learning rate decay and VGG-16 [13] style
feature extraction network following the work of [15]. V
and T are respectively set to 2466 and 196. We set weights
for the two losses as λc = 100 and λe = 0.1 and used Eu-
ler’s method for our experiments if not specified otherwise.
Training the ODE solver. At each time step tn, the step
size is sampled from a uniform distribution U(hlo, hhi) in
order to prevent a rapid mode collapse. To see the effects of
the number of deformations, we conduct two types of exper-
iments: shallow and deep in which step size is sampled from
U(0.2, 0.3) and U(0.05, 0.2) respectively. Starting with the
initial time step sampled from U(0.0, 0.25), our model es-
capes the mesh deformation loop when the time step ex-
ceeds 1 (tN > 1) as shown in Fig. 2. Note, the number of
forward evaluations N , i.e., mesh deformations, is entirely
dependant on the distribution where we sample h from.
Datasets and evaluation metrics. We train and evaluate
our model on ShapeNet [3] benchmark dataset which con-
tains 50k models belonging to 13 object categories. Due to
its large amount of training samples, we use samples from
only plane category1 out of 13. Chamfer distance is used to
evaluate predictions of our model (lower the better).

4.1. Results and comparisons

Table 1 summarizes our results and those of recent meth-
ods [5, 6, 9, 15] and Fig. 3 illustrates qualitative results.
Both quantitative and qualitative results prove that it appar-
ently learns to find a reliable solution in a continuous time
space with constant memory cost, exposing potential per-
formance gains with better network design for ODE solver.
However, we believe that further evaluations are required
to verify the superiority of our model, e.g., evaluations on
samples of the other categories followed by additional stan-
dard evaluation metrics such as EMD and F-scores.

1Even in multi-GPU setting, it takes a couple of weeks for our model
to train all the samples so we train plane category only for 10 iterations.

Model ODEeuler
d RESd RESs ODEeuler

s ODEheun
s ODEmidpt

s

CD 0.408 0.354 2.566 16.940 11.711 12.558
NFE 7.55 8 4 4.01 4.01 4.02

# param. O(1) O(L) O(L) O(1) O(1) O(1)

Table 2. Different model comparisons. CD: chamfer distance,
NFE: the average number of forward evaluations. The subscripts
indicate the type of experiments (d: deep and s: shallow).

time

Ground-truth

Figure 3. Mesh deformation of a sample in continuous time space
with step sizes sampled from U(0.05, 0.2) (top) and U(0.2, 0.3)
(bottom). Its continuous deformation with tiny step sizes sam-
pled from U(0.001, 0.005) is visualized at https://youtu.
be/St0wEBP8S2c. Best viewed in electronics.

Mesh deformation with naı̈ve residuals. To see the bene-
fits of using ODE solver for mesh generation, we compare
with discrete version of our model in which multiple (8 and
4) mesh gradient prediction networks are stacked with skip
connections without the time parameter tn like an ordinary
ResNet architecture [8]. The results are shown in third and
fourth columns of Tab. 2. The comparison between results
of RESd, RESs, and ODEeuler

d reveals that larger number of
forward evaluations clearly provides better prediction.
Training with advanced numerical method. Fifth to last
columns of Tab. 2 show results of our model trained with
Euler’s, Huen’s, and midpoint method respectively (shal-
low) where Heun’s and midpoint method provide better ap-
proximation to solutions than Euler’s. The experimental re-
sults reveal that use of modern numerical methods for ODE
may promote extra performance gains.

4.2. Benefits of using neural ODE

The use of advanced numerical methods, e.g., 4-th order
Runge-Kutta and Dormand Prince, help ODE solvers find
accurate solutions by adaptively deciding step sizes using
explicit error estimation. A constant parameter size of a
model regardless of the number of forward evaluations is
another advantage. Chen et al. [4] also show that the adjoint
sensitivity method during backward pass facilitates efficient
training in terms of both training time and memory.

5. Conclusion
We showed that the idea of neural ordinary differential

equation can seamlessly be adopted in the task of single-
image mesh generation. We believe that more careful net-
work design choice for ODE solver along with advanced
numerical methods will further facilitate the quality of the
predicted geometry. We leave this investigation to future
work.
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